skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thelen, Kurt"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract ‘Marginal lands’ are low productivity sites abandoned from agriculture for reasons such as low or high soil water content, challenging topography, or nutrient deficiency. To avoid competition with crop production, cellulosic bioenergy crops have been proposed for cultivation on marginal lands, however on these sites they may be more strongly affected by environmental stresses such as low soil water content. In this study we used rainout shelters to induce low soil moisture on marginal lands and determine the effect of soil water stress on switchgrass growth and the subsequent production of bioethanol. Five marginal land sites that span a latitudinal gradient in Michigan and Wisconsin were planted to switchgrass in 2013 and during the 2018–2021 growing seasons were exposed to reduced precipitation under rainout shelters in comparison to ambient precipitation. The effect of reduced precipitation was related to the environmental conditions at each site and biofuel production metrics (switchgrass biomass yields and composition and ethanol production). During the first year (2018), the rainout shelters were designed with 60% rain exclusion, which did not affect biomass yields compared to ambient conditions at any of the field sites, but decreased switchgrass fermentability at the Wisconsin Central–Hancock site. In subsequent years, the shelters were redesigned to fully exclude rainfall, which led to reduced biomass yields and inhibited fermentation for three sites. When switchgrass was grown in soils with large reductions in moisture and increases in temperature, the potential for biofuel production was significantly reduced, exposing some of the challenges associated with producing biofuels from lignocellulosic biomass grown under drought conditions. 
    more » « less
  2. 'Marginal lands' are low productivity sites abandoned from agriculture for reasons such as low or high soil water content, challenging topography, or nutrient deficiency. To avoid competition with crop production, cellulosic bioenergy crops have been proposed for cultivation on marginal lands, however on these sites they may be more strongly affected by environmental stresses such as low soil water content. In this study we used rainout shelters to induce low soil moisture on marginal lands and determine the effect of soil water stress on switchgrass growth and the subsequent production of bioethanol. Five marginal land sites that span a latitudinal gradient in Michigan and Wisconsin were planted to switchgrass in 2013 and during the 2018-2021 growing seasons were exposed to reduced precipitation under rainout shelters in comparison to ambient precipitation. The effect of reduced precipitation was related to the environmental conditions at each site and biofuel production metrics (switchgrass biomass yields and composition and ethanol production). During the first year (2018), the rainout shelters were designed with 60% rain exclusion, which did not affect biomass yields compared to ambient conditions at any of the field sites, but decreased switchgrass fermentability at the Wisconsin Central - Hancock site. In subsequent years, the shelters were redesigned to fully exclude rainfall, which led to reduced biomass yields and inhibited fermentation for three sites. When switchgrass was grown in soils with large reductions in moisture and increases in temperature, the potential for biofuel production was significantly reduced, exposing some of the challenges associated with producing biofuels from lignocellulosic biomass grown under drought conditions. 
    more » « less
  3. Dataset Abstract Great Lakes Bioenergy Research Consortium Sustainably Experiment activity logs and background information. original data source http://lter.kbs.msu.edu/datasets/63 
    more » « less
  4. At two sites in the North Central USA (Michigan (KBS) and Wisconsin (ARL)), we evaluated the effect of N fertilization on the yield and quality of five perennial bioenergy feedstock cropping systems: (1) switchgrass (Panicum virgatum L.), (2) giant miscanthus (Miscanthus × giganteus), (3) a native grass mixture (5 species), (4) an early successional field (volunteer herbaceous species), and (5) a restored prairie (18 species). In a randomized complete block design with 5 replicates and 2 split plots, N was applied at 0 and 56 kg ha−1 to split plots for each cropping system from 2010 to 2016. No yield response to N was detected in switchgrass at either location in any year. Giant miscanthus exhibited a positive yield response to N at both sites (11% at KBS and 83% at ARL). Nitrogen fertilizer addition significantly reduced glucose (KBS 12.9 and 13.8 g kg−1 year−1, ARL 11.2 and 9.7 g kg−1 year−1) in the native grass mix and restored prairie systems respectively. Nitrogen fertilizer also reduced xylose at KBS in the switchgrasss, native grass mix, and restored prairie (4.9, 7.5, and 5.0 g kg−1 year−1). At ARL, N fertilization reduced xylose levels in switchgrass, giant miscanthus, and restored prairie (7.4, 6.8, and 6.2 g kg−1 year−1) and increased xylose levels in the early successional system (5.0 g kg−1 year−1). 
    more » « less